
MESCO Engineering GmbH | Berner Weg 7 | 79539 Lörrach | Phone +49 7621 1575 0 | Fax +49 7621 1575 175 | info@mesco-engineering.com | www.mesco-engineering.com

Agile approaches, such as Scrum, are highly effective
in software development and are naturally also useful in
projects to do with functional safety, in accordance with
IEC 61508-3.

The following helps to shed some light on Scrum:
•	 Teams are motivated through effective communication,

or ‘daily scrums’
•	 Teams are protected from unauthorised non-project

access
•	 Capable and qualified product manager, or ‘product

owner’
•	 Review phases during a project, or ‘sprint retrospectives’
•	 Metrics to measure project progress, ‘release/sprint

burndowns’
•	 Prioritisation of requirements, or ‘product backlogs’

Motivation
In the past, software was merely an accessory that
controlled the few functions of an actuator or sensor
and prepared essential communication. In the age of
Ethernet-based real-time protocols, more powerful
processors and growing requirements, SMEs have
started facing these challenges head-on with the help
of software developers. However, having the tools is not
enough. If there are no defined software development
processes that are adhered to, software releases often
prove hard to plan and errors pile up. Changes would
often be implemented on demand and would only be
understandable to the developers themselves.

Part 1 of this article detailed individual standards and the
relationships between them, outlined the safety lifecycle,
and explored the tension between flexibility, agility, and the
formal requirements stipulated in the standards.

In Part 2, we looked at the early stages of projects and
examined in more detail the emergence of the SRS (Safety
Requirement Specification).

Part 3 discusses software development processes,
product lifecycle management, and the documentation and
development environment in which traceable and verifiable
requirements should, in accordance with IEC 61508,
result in a certifiable product. But what does this type of
environment contain? Which tools are used? And how are
these tools integrated?

Software development processes
Certain process models exist, such as the V-model, that
are divided into phases. This is the model of choice if
exact specifications are to be observed and verified. It
also represents the standard model for functionally safe
developments, external audits and certifications and public
clients. It is usually combined with iterative models. Planned
processes such as these are characterised by the fact that
all activities are planned in advance and the progress of the
project is measured against this plan.

Agile (evolutionary) processes are another option, tending
to be more beneficial when customer requirements
are imprecise or change over the duration of a project.
User interfaces are a prime example: ‘ease of use’ as a
requirement is vague and can be reinterpreted time and
time again.

FUNCTIONALE SAFETY

Product lifecycle management – but how!?
Toolchain – from requirement to test case; traceable, documented and verifiable

Figure 1: V-model

Figure 2: Scrum framework / agile approach

Series of articles Functional Safety, Part 3

MESCO Engineering GmbH | Berner Weg 7 | 79539 Lörrach | Phone +49 7621 1575 0 | Fax +49 7621 1575 175 | info@mesco-engineering.com | www.mesco-engineering.com

•	 Iterative development for measuring project progress
and motivation

•	 Daily (and nightly) builds of complete software, or
‘continuous integration’, to:

- Generate a working version every day
- Retain control over ‘header’ and build mechanisms
- Be able to carry out quick reviews of the ‘living object’
- Interact with the customer by means of early

‘prototypes’

Ultimately, there is no such thing as a ‘right’ or ‘wrong’
process when it comes to software development; there is
only the right process for the project.

Software development processes are typically broken
down into performance management processes (i.e.
product, project and quality management), service provision
processes (i.e. the actual core process), and support
processes and methods.

An important component here is change management, or in
other words, the way in which changes in requirements flow
into the overall process. Traceability and documentation
are also central elements here.

Support tools, toolchain
Requirement tracing tool
This tool allows you to write down, group, and link structured
requirements. It typically also includes a module for the
management and tracking of errors and anomalies and a
module for the documentation and tracking of tests.

Links can be used to track whether each requirement has
been processed, documented and tested. This system is
the central hub of the project. Polarion (Siemens), Doors
(IBM) and Enterprise Architect (Sparx Systems) are all
examples of requirement tracking tools. In total, there are
over 30 noted manufacturers of these systems, so it needs
to be determined in advance which system characteristics
are most important or useful for the respective company.

Version Control Server
Typically, new functionalities are implemented in a follow-up
software version to the version currently used. At the same
time, the current version has to be updated with bug fixes and
corrections. The challenge then is to incorporate fixes that
were introduced to the current version into the next version
and at the same time prevent the functionalities of the next
version from being incorporated into the current version. If
multiple different versions are in development at the same
time, they must be strictly separated from each other.

The second challenge is
working together in a team
on a piece of software. A
developer may be responsible
for all functionalities, for an
entire object class, or just for a
particular function or method.

Figure 3: Agile approach vs. V-model

Figure 5: Change control / process

Figure 4: Overview of the
development process

MESCO Engineering GmbH | Berner Weg 7 | 79539 Lörrach | Phone +49 7621 1575 0 | Fax +49 7621 1575 175 | info@mesco-engineering.com | www.mesco-engineering.com

The compiler, linker and debugger are important
components that are usually certified and approved by an
auditing body for functional safety development. There are
processor-specific libraries and settings, etc., some of which
are made by processor manufacturers (ARM, Renesas) and
others by specific workbench manufacturers (IAR, Keil). A
TÜV certificate and corresponding report confirm that the
specific compiler or workbench meets the requirements
for tools in class T3 in accordance with IEC 61508-3. This
allows customers to use the compiler or workbench for
safety-related development up to SIL 3 (IEC 61508) or ASILD
(ISO 26262) without the need for qualifications, provided
the recommendations and conditions documented in the
qualification kit are adhered to.

The functional safety standard IEC 61508 recommends that
the C programming language only be used for the lowest
Safety Integrity Level, SIL 1. For SIL 3 and SIL 4, C may only

be used with the suitable coding standards and analysis
tools. An important component for this is the programming
standard MISRA-C. MISRA-C 2004 includes around 140 rules
in 21 groups, including initialisation, data types, structures,
and preprocessors. The aim of MISRA-C is to overcome
the shortcomings of the C standard and prevent potential
programming risks. Static code analysis tools such as
PC-lint already support MISRA-C and, integrated into the
toolchain, help meet the challenges of the C language for
safety-related applications.

The effective management of software artefacts, especially
source code, is carried out by a version control server.
Other important terms include source code configuration
management (SCCM), revision control system (RCS), and
version control system (VCS). These systems have been
on the market for over 40 years now, on various platforms.
Microsoft SourceSafe is one of the best-known systems
for Windows, while CVS is well-known for open-source
environments. CVS is widely used today, as is its derivative,
Apache Subversion (SVN), which was developed as an
alternative to CVS to eliminate some of its disadvantages.

Git is an entirely different variant, developed from Linus
Torvalds’ Linux environment. The biggest advantage of
Git is its speed between dispersed sites when there is low
bandwidth between them. However, for developers from the
classic CVS environment, the learning curve is significantly
larger, and the support for Windows servers is quite limited.
An offshoot of this is Mercurial, which provides better
Windows server support.

Again, there is no silver bullet and it ultimately depends
on the developers, system administrators and project
managers who will be using the systems.

Continuous integration server
The continuous integration server represents the central
tool in which software is integrated, compiled and complete
versions are made available for the build and test servers.
Based on the integration server, statistical source code
analysis tools are used frequently to influence the quality
of the software at an early stage. Prominent examples
of this include Jenkins and Phyton, both of which can be
integrated into the aforementioned version control systems.
With plug-in, these tools are highly powerful. From simple
examinations of whether all variable objects have been
initialised, to statistical statements about code coverage,
there is something to make each software developer jump
for joy.

Build and test servers
Build and test servers provide the validation and verification
team with the latest trial versions and synchronise the
hardware-in-the-loop (HIL) and device under test (DUT)
tests.

Figure 6: Version control with VCS and SVN

Figure 7: Git and Mercurial version control with local
instances

MESCO Engineering GmbH | Berner Weg 7 | 79539 Lörrach | Phone +49 7621 1575 0 | Fax +49 7621 1575 175 | info@mesco-engineering.com | www.mesco-engineering.com

Figure 8: Overview of the software development toolchain

Overview and summary
The traceability from the requirement all the way up to
the test and verifiable statistical statements results from
the integration of the described tools, as shown in the
following graphic.

The toolchain is a combination of processes and tools.
Processes alone make it difficult to generate proof and
traceability, and considerable effort is involved. Tools
without integration and defined processes also come up
short. The method of choice, therefore, is to integrate
these tools intelligently and to combine them with smart
processes that are adapted to the required Safety
Integrity Level (from standard development without
SIL requirements all the way up to SIL 3 requirements).
However, setting up the processes and the toolchain

cannot be done overnight. It requires a vision and the
continuous implementation of individual steps until, after
performing several phases of iteration – which can take
years – the goal of process and tool integration is finally
achieved.

Autor:	 Dr. Johann Pohany
	 Managing Director
	 Medidtcine Consultants
	 www.medidtcine.com

Autor:	 Armin Götzmann
	 Managing Director
	 MESCO Systems GmbH
	 www.mesco.de

